A multiple time interval finite state projection algorithm for the solution to the chemical master equation
نویسندگان
چکیده
At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME). Although only a few classes of CME problems are known to have exact and computationally tractable analytical solutions, the recently proposed finite state projection (FSP) technique provides a systematic reduction of the CME with guaranteed accuracy bounds. For many non-trivial systems, the original FSP technique has been shown to yield accurate approximations to the CME solution. Other systems may require a projection that is still too large to be solved efficiently; for these, the linearity of the FSP allows for many model reductions and computational techniques, which can increase the efficiency of the FSP method with little or no loss in accuracy. In this paper, we present a new approach for choosing and expanding the projection for the original FSP algorithm. Based upon this approach, we develop a new algorithm that exploits the linearity property of super-position. The new algorithm retains the full accuracy guarantees of the original FSP approach, but with significantly increased efficiency for some problems and a greater range of applicability. We illustrate the benefits of this algorithm on a simplified model of the heat shock mechanism in Escherichia coli. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
A Multiple Time-Step Finite State Projection Algorithm for the Solution to the Chemical Master Equation
At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME). It is commonly believed that the CME cannot be solved except for the most trivial of cases, but recent work has raised questions regarding validity of this belief. For many cases, Finite State P...
متن کاملReduction and solution of the chemical master equation using time scale separation and finite state projection.
The dynamics of chemical reaction networks often takes place on widely differing time scales--from the order of nanoseconds to the order of several days. This is particularly true for gene regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical models often lead to serious computational difficulties, such as numerical stiffness in the case of differenti...
متن کاملFokker–Planck approximation of the master equation in molecular biology
The master equation of chemical reactions is solved by first approximating it by the Fokker–Planck equation. Then this equation is discretized in the state space and time by a finite volume method. The difference between the solution of the master equation and the discretized Fokker–Planck equation is analyzed. The solution of the Fokker–Planck equation is compared to the solution of the master...
متن کاملA finite state projection algorithm for the stationary solution of the chemical master equation.
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of ...
متن کاملThe finite state projection algorithm for the solution of the chemical master equation.
This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007